The copper chaperone CCS is abundant in neurons and astrocytes in human and rodent brain.
نویسندگان
چکیده
Copper trafficking in mammalian cells is highly regulated. CCS is a copper chaperone that donates copper to the antioxidant enzyme copper/zinc superoxide dismutase 1 (SOD 1). Mutations of SOD1 are responsible for approximately 20% of familial amyotrophic lateral sclerosis (FALS). Monospecific antibodies were generated to evaluate the localization and cellular distribution of this copper chaperone in human and mouse brain as well as other organs. CCS is found to be ubiquitously expressed by multiple tissues and is present in particularly high concentrations in kidney and liver. In brain and spinal cord, CCS was found throughout the neuropil, with expression largely confined to neurons and some astrocytes. Like SOD1, CCS immunoreactivity was intense in Purkinje cells, deep cerebellar neurons, and pyramidal cortical neurons, whereas in spinal cord, CCS was highly expressed in motor neurons. In cortical neurons, CCS was present in the soma and proximal dendrites, as well as some axons. Although the distribution of CCS paralleled that of SOD1, there was a 12-30-fold molar excess of SOD1 over CCS. That both SOD1 and CCS are present, together, in cells that degenerate in ALS also emphasizes the potential role of CCS in mutant SOD1-mediated toxicity.
منابع مشابه
Enhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli
Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...
متن کاملP108: Microglia in Traumatic Brain Injury
Microglia is one of the first innate immune components. These cells account about 5 to 10% of the entire adult brain cells and are activated by trauma. Complex-mediated inflammatory responses occur through cellular and molecular events during and after the traumatic brain injury (TBI). In-lesion area astrocytes, microglia, and damaged neurons begin to secrete cytokines and chemokines. Microglia...
متن کاملP 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes
Epilepsy is neurological disorders that afflict many people around the world with a higher prevalence rate in children and in low income countries. Temporal lobe epilepsy (TLE) is result from hippocampal sclerosis is a neurological disorder with difficult treatment. Stem cells can transform into any type of cells such as glial cells, consequently stem cells can use for medical treatment. Stem c...
متن کاملEffect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors
Objective(s): The stimulation of neural stem cells (NSCs) differentiation into neurons has attracted great attention in management of neurodegenerative disease and traumatic brain injury. It has been reported that selegiline could enhance the morphologic differentiation of embryonic stem cells. Therefore this study aimed to investigate the effects of selegiline on NSCs differentiation with focu...
متن کاملThe role of glia in neurological disease
Glial cells form a network in the central nervous system to support neurons and interact with them. The glia consist essentially of astrocytes that help with the nutrition of neurons and react in some cases of injury, oligodendrocytes that produce myelin, and microglia that are derived from the haemopoietic system and are concerned with the immunological defense of the nervous system. Experimen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurochemistry
دوره 72 1 شماره
صفحات -
تاریخ انتشار 1999